Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Front Toxicol ; 6: 1370045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646442

RESUMO

The ICH S1B carcinogenicity global testing guideline has been recently revised with a novel addendum that describes a comprehensive integrated Weight of Evidence (WoE) approach to determine the need for a 2-year rat carcinogenicity study. In the present work, experts from different organizations have joined efforts to standardize as much as possible a procedural framework for the integration of evidence associated with the different ICH S1B(R1) WoE criteria. The framework uses a pragmatic consensus procedure for carcinogenicity hazard assessment to facilitate transparent, consistent, and documented decision-making and it discusses best-practices both for the organization of studies and presentation of data in a format suitable for regulatory review. First, it is acknowledged that the six WoE factors described in the addendum form an integrated network of evidence within a holistic assessment framework that is used synergistically to analyze and explain safety signals. Second, the proposed standardized procedure builds upon different considerations related to the primary sources of evidence, mechanistic analysis, alternative methodologies and novel investigative approaches, metabolites, and reliability of the data and other acquired information. Each of the six WoE factors is described highlighting how they can contribute evidence for the overall WoE assessment. A suggested reporting format to summarize the cross-integration of evidence from the different WoE factors is also presented. This work also notes that even if a 2-year rat study is ultimately required, creating a WoE assessment is valuable in understanding the specific factors and levels of human carcinogenic risk better than have been identified previously with the 2-year rat bioassay alone.

3.
Sci Total Environ ; 919: 170838, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340869

RESUMO

Large variations in redox-related water parameters, like pH and dissolved oxygen (DO), have been documented in New Hampshire (United States) drinking-water wells over the course of a few hours under pumping conditions. These findings suggest that comparable sub-daily variability in dissolved concentrations of redox-reactive and toxic arsenic (As) also may occur, representing a potentially critical public-health data gap and a fundamental challenge for long-term As-trends monitoring. To test this hypothesis, discrete groundwater As samples were collected approximately hourly during one day in May and again in August 2019 from three New Hampshire drinking-water wells (2 public-supply, 1 private) under active pumping conditions. Collected samples were assessed by laboratory analysis (total As [AsTot], As(III), As(V)) and by field analysis (AsTot) using a novel integrated biosensor system. Laboratory analysis revealed sub-daily variability (range) in AsTot concentrations equivalent to 16 % - 36 % of that observed in the antecedent 3-year bimonthly trend monitoring. Thus, the results indicated that, along with previously demonstrated seasonality effects, the timing and duration of pumping are important considerations when assessing trends in drinking-water As exposures and concomitant risks. Results also illustrated the utility of the field sensor for monitoring and management of AsTot exposures in near-real-time.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Estados Unidos , Poços de Água , Abastecimento de Água , New Hampshire , Arsênio/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água Potável/análise
4.
Sci Total Environ ; 915: 169634, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38272727

RESUMO

Multistressor studies were performed in five regions of the United States to assess the role of pesticides as stressors affecting invertebrate communities in wadable streams. Pesticides and other chemical and physical stressors were measured in 75 to 99 streams per region for 4 weeks, after which invertebrate communities were surveyed (435 total sites). Pesticides were sampled weekly in filtered water, and once in bed sediment. The role of pesticides as a stressor to invertebrate communities was assessed by evaluating multiple lines of evidence: toxicity predictions based on measured pesticide concentrations, multivariate models and other statistical analyses, and previously published mesocosm experiments. Toxicity predictions using benchmarks and species sensitivity distributions and statistical correlations suggested that pesticides were present at high enough concentrations to adversely affect invertebrate communities at the regional scale. Two undirected techniques-boosted regression tree models and distance-based linear models-identified which pesticides were predictors of (respectively) invertebrate metrics and community composition. To put insecticides in context with known, influential covariates of invertebrate response, generalized additive models were used to identify which individual pesticide(s) were important predictors of invertebrate community condition in each region, after accounting for natural covariates. Four insecticides were identified as stressors to invertebrate communities at the regional scale: bifenthrin, chlordane, fipronil and its degradates, and imidacloprid. Fipronil was particularly important in the Southeast region, and imidacloprid, bifenthrin, and chlordane were important in multiple regions. For imidacloprid, bifenthrin, and fipronil, toxicity predictions were supported by mesocosm experiments that demonstrated adverse effects on naïve aquatic communities when dosed under controlled conditions. These multiple lines of evidence do not prove causality-which is challenging in the field under multistressor conditions-but they make a strong case for the role of insecticides as stressors adversely affecting invertebrate communities in streams within the five sampled regions.


Assuntos
Inseticidas , Neonicotinoides , Nitrocompostos , Praguicidas , Piretrinas , Poluentes Químicos da Água , Animais , Estados Unidos , Praguicidas/análise , Inseticidas/análise , Rios/química , Clordano/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Invertebrados
5.
Environ Int ; 178: 108033, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356308

RESUMO

Drinking-water quality is a rising concern in the United States (US), emphasizing the need to broadly assess exposures and potential health effects at the point-of-use. Drinking-water exposures to per- and poly-fluoroalkyl substances (PFAS) are a national concern, however, there is limited information on PFAS in residential tapwater at the point-of-use, especially from private-wells. We conducted a national reconnaissance to compare human PFAS exposures in unregulated private-well and regulated public-supply tapwater. Tapwater from 716 locations (269 private-wells; 447 public supply) across the US was collected during 2016-2021 including three locations where temporal sampling was conducted. Concentrations of PFAS were assessed by three laboratories and compared with land-use and potential-source metrics to explore drivers of contamination. The number of individual PFAS observed ranged from 1 to 9 (median: 2) with corresponding cumulative concentrations (sum of detected PFAS) ranging from 0.348 to 346 ng/L. Seventeen PFAS were observed at least once with PFBS, PFHxS and PFOA observed most frequently in approximately 15% of the samples. Across the US, PFAS profiles and estimated median cumulative concentrations were similar among private wells and public-supply tapwater. We estimate that at least one PFAS could be detected in about 45% of US drinking-water samples. These detection probabilities varied spatially with limited temporal variation in concentrations/numbers of PFAS detected. Benchmark screening approaches indicated potential human exposure risk was dominated by PFOA and PFOS, when detected. Potential source and land-use information was related to cumulative PFAS concentrations, and the number of PFAS detected; however, corresponding relations with specific PFAS were limited likely due to low detection frequencies and higher detection limits. Information generated supports the need for further assessments of cumulative health risks of PFAS as a class and in combination with other co-occurring contaminants, particularly in unmonitored private-wells where information is limited or not available.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Estados Unidos , Humanos , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Qualidade da Água , Água , Laboratórios
6.
Sci Total Environ ; 868: 161672, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36657670

RESUMO

In the United States and globally, contaminant exposure in unregulated private-well point-of-use tapwater (TW) is a recognized public-health data gap and an obstacle to both risk-management and homeowner decision making. To help address the lack of data on broad contaminant exposures in private-well TW from hydrologically-vulnerable (alluvial, karst) aquifers in agriculturally-intensive landscapes, samples were collected in 2018-2019 from 47 northeast Iowa farms and analyzed for 35 inorganics, 437 unique organics, 5 in vitro bioassays, and 11 microbial assays. Twenty-six inorganics and 51 organics, dominated by pesticides and related transformation products (35 herbicide-, 5 insecticide-, and 2 fungicide-related), were observed in TW. Heterotrophic bacteria detections were near ubiquitous (94 % of the samples), with detection of total coliform bacteria in 28 % of the samples and growth on at least one putative-pathogen selective media across all TW samples. Health-based hazard index screening levels were exceeded frequently in private-well TW and attributed primarily to inorganics (nitrate, uranium). Results support incorporation of residential treatment systems to protect against contaminant exposure and the need for increased monitoring of rural private-well homes. Continued assessment of unmonitored and unregulated private-supply TW is needed to model contaminant exposures and human-health risks.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Estados Unidos , Humanos , Iowa , Poluentes Químicos da Água/análise , Agricultura , Monitoramento Ambiental/métodos
7.
Environ Sci Technol ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36626647

RESUMO

Global demand for safe and sustainable water supplies necessitates a better understanding of contaminant exposures in potential reuse waters. In this study, we compared exposures and load contributions to surface water from the discharge of three reuse waters (wastewater effluent, urban stormwater, and agricultural runoff). Results document substantial and varying organic-chemical contribution to surface water from effluent discharges (e.g., disinfection byproducts [DBP], prescription pharmaceuticals, industrial/household chemicals), urban stormwater (e.g., polycyclic aromatic hydrocarbons, pesticides, nonprescription pharmaceuticals), and agricultural runoff (e.g., pesticides). Excluding DBPs, episodic storm-event organic concentrations and loads from urban stormwater were comparable to and often exceeded those of daily wastewater-effluent discharges. We also assessed if wastewater-effluent irrigation to corn resulted in measurable effects on organic-chemical concentrations in rain-induced agricultural runoff and harvested feedstock. Overall, the target-organic load of 491 g from wastewater-effluent irrigation to the study corn field during the 2019 growing season did not produce substantial dissolved organic-contaminant contributions in subsequent rain-induced runoff events. Out of the 140 detected organics in source wastewater-effluent irrigation, only imidacloprid and estrone had concentrations that resulted in observable differences between rain-induced agricultural runoff from the effluent-irrigated and nonirrigated corn fields. Analyses of pharmaceuticals and per-/polyfluoroalkyl substances in at-harvest corn-plant samples detected two prescription antibiotics, norfloxacin and ciprofloxacin, at concentrations of 36 and 70 ng/g, respectively, in effluent-irrigated corn-plant samples; no contaminants were detected in noneffluent irrigated corn-plant samples.

8.
Environ Int ; 171: 107701, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542998

RESUMO

BACKGROUND: Bottled water (BW) consumption in the United States and globally has increased amidst heightened concern about environmental contaminant exposures and health risks in drinking water supplies, despite a paucity of directly comparable, environmentally-relevant contaminant exposure data for BW. This study provides insight into exposures and cumulative risks to human health from inorganic/organic/microbial contaminants in BW. METHODS: BW from 30 total domestic US (23) and imported (7) sources, including purified tapwater (7) and spring water (23), were analyzed for 3 field parameters, 53 inorganics, 465 organics, 14 microbial metrics, and in vitro estrogen receptor (ER) bioactivity. Health-benchmark-weighted cumulative hazard indices and ratios of organic-contaminant in vitro exposure-activity cutoffs were assessed for detected regulated and unregulated inorganic and organic contaminants. RESULTS: 48 inorganics and 45 organics were detected in sampled BW. No enforceable chemical quality standards were exceeded, but several inorganic and organic contaminants with maximum contaminant level goal(s) (MCLG) of zero (no known safe level of exposure to vulnerable sub-populations) were detected. Among these, arsenic, lead, and uranium were detected in 67 %, 17 %, and 57 % of BW, respectively, almost exclusively in spring-sourced samples not treated by advanced filtration. Organic MCLG exceedances included frequent detections of disinfection byproducts (DBP) in tapwater-sourced BW and sporadic detections of DBP and volatile organic chemicals in BW sourced from tapwater and springs. Precautionary health-based screening levels were exceeded frequently and attributed primarily to DBP in tapwater-sourced BW and co-occurring inorganic and organic contaminants in spring-sourced BW. CONCLUSION: The results indicate that simultaneous exposures to multiple drinking-water contaminants of potential human-health concern are common in BW. Improved understandings of human exposures based on more environmentally realistic and directly comparable point-of-use exposure characterizations, like this BW study, are essential to public health because drinking water is a biological necessity and, consequently, a high-vulnerability vector for human contaminant exposures.


Assuntos
Água Potável , Compostos Orgânicos Voláteis , Poluentes Químicos da Água , Humanos , Estados Unidos , Abastecimento de Água , Exposição Ambiental/efeitos adversos , Poluentes Químicos da Água/análise
9.
ACS ES T Water ; 2(10): 1772-1788, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277121

RESUMO

In the United States (US), private-supply tapwater (TW) is rarely monitored. This data gap undermines individual/community risk-management decision-making, leading to an increased probability of unrecognized contaminant exposures in rural and remote locations that rely on private wells. We assessed point-of-use (POU) TW in three northern plains Tribal Nations, where ongoing TW arsenic (As) interventions include expansion of small community water systems and POU adsorptive-media treatment for Strong Heart Water Study participants. Samples from 34 private-well and 22 public-supply sites were analyzed for 476 organics, 34 inorganics, and 3 in vitro bioactivities. 63 organics and 30 inorganics were detected. Arsenic, uranium (U), and lead (Pb) were detected in 54%, 43%, and 20% of samples, respectively. Concentrations equivalent to public-supply maximum contaminant level(s) (MCL) were exceeded only in untreated private-well samples (As 47%, U 3%). Precautionary health-based screening levels were exceeded frequently, due to inorganics in private supplies and chlorine-based disinfection byproducts in public supplies. The results indicate that simultaneous exposures to co-occurring TW contaminants are common, warranting consideration of expanded source, point-of-entry, or POU treatment(s). This study illustrates the importance of increased monitoring of private-well TW, employing a broad, environmentally informative analytical scope, to reduce the risks of unrecognized contaminant exposures.

10.
Sci Total Environ ; 851(Pt 1): 158205, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36028019

RESUMO

Aquatic ecosystems convey complex contaminant mixtures from anthropogenic pollution on a global scale. Point (e.g., municipal wastewater) and nonpoint sources (e.g., stormwater runoff) are both drivers of contaminant mixtures in aquatic habitats. The objectives of this study were to identify the contaminant mixtures present in surface waters impacted by both point and nonpoint sources, to determine if aquatic biota (amphibian and fish) health effects (testicular oocytes and parasites) occurred at these sites, and to understand if differences in biological and chemical measures existed between point (on-stream) and nonpoint sources (off-stream). To accomplish this, water chemistry, fishes, and frogs were collected from 21 sites in the New Jersey Pinelands, United States. Off-stream sites consisted of 3 reference and 10 degraded wetlands. On-stream sites consisted of two reference lakes and six degraded streams/lakes (four sites above and two sites below wastewater outfalls). Surface water was collected four times at each site and analyzed for 133 organic and inorganic contaminants. One native and five non-native fish species were collected from streams/lakes and native green frogs from wetlands (ponds and stormwater basins). Limited differences in contaminant concentrations were observed in reference and degraded wetlands but for streams/lakes, results indicated that landscape alteration, (upland agricultural and developed land) was the primary driver of contaminant concentrations rather than municipal wastewater. Incidence of estrogenic endocrine disruption (intersex) was species dependent with the highest prevalence observed in largemouth bass and black crappie and the lowest prevalence observed in green frogs and tessellated darters. Parasite prevalence was site and species dependent. Prevalence of eye parasites increased with increasing concentrations of industrial, mycotoxin, and cumulative inorganic contaminants. These findings are critical to support the conservation, protection, and management of a wide range of aquatic species in the Pinelands and elsewhere as habitat loss, alteration, and fragmentation increase with increasing development.


Assuntos
Bass , Micotoxinas , Poluentes Químicos da Água , Animais , Bass/metabolismo , Ecossistema , Monitoramento Ambiental , Micotoxinas/metabolismo , New Jersey , Estados Unidos , Águas Residuárias , Água/metabolismo , Poluentes Químicos da Água/análise
11.
Sci Adv ; 8(15): eabj8182, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35417236

RESUMO

Neonicotinoid mixtures are common in streams worldwide, but corresponding ecological responses are poorly understood. We combined experimental and observational studies to narrow this knowledge gap. The mesocosm experiment determined that concentrations of the neonicotinoids imidacloprid and clothianidin (range of exposures, 0 to 11.9 µg/liter) above the hazard concentration for 5% of species (0.017 and 0.010 µg/liter, respectively) caused a loss in taxa abundance and richness, disrupted adult emergence, and altered trophodynamics, while mixtures of the two neonicotinoids caused dose-dependent synergistic effects. In 85 Coastal California streams, neonicotinoids were commonly detected [59% of samples (n = 340), 72% of streams], frequently occurred as mixtures (56% of streams), and potential toxicity was dominated by imidacloprid (maximum = 1.92 µg/liter) and clothianidin (maximum = 2.51 µg/liter). Ecological responses in the field were consistent with the synergistic effects observed in the mesocosm experiment, indicating that neonicotinoid mixtures pose greater than expected risks to stream health.

12.
Environ Int ; 163: 107176, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349912

RESUMO

BACKGROUND: Prenatal exposure to drinking water with arsenic concentrations >50 µg/L is associated with adverse birth outcomes, with inconclusive evidence for concentrations ≤50 µg/L. In a collaborative effort by public health experts, hydrologists, and geologists, we used published machine learning model estimates to characterize arsenic concentrations in private wells-federally unregulated for drinking water contaminants-and evaluated associations with birth outcomes throughout the conterminous U.S. METHODS: Using several machine learning models, including boosted regression trees (BRT) and random forest classification (RFC), developed from measured groundwater arsenic concentrations of ∼20,000 private wells, we characterized the probability that arsenic concentrations occurred within specific ranges in groundwater. Probabilistic model estimates and private well usage data were linked by county to all live birth certificates from 2016 (n = 3.6 million). We evaluated associations with gestational age and term birth weight using mixed-effects models, adjusted for potential confounders and incorporated random intercepts for spatial clustering. RESULTS: We generally observed inverse associations with term birth weight. For instance, when using BRT estimates, a 10-percentage point increase in the probability that private well arsenic concentrations exceeded 5 µg/L was associated with a -1.83 g (95% CI: -3.30, -0.38) lower term birth weight after adjusting for covariates. Similarly, a 10-percentage point increase in the probability that private well arsenic concentrations exceeded 10 µg/L was associated with a -2.79 g (95% CI: -4.99, -0.58) lower term birth weight. Associations with gestational age were null. CONCLUSION: In this largest epidemiologic study of arsenic and birth outcomes to date, we did not observe associations of modeled arsenic estimates in private wells with gestational age and found modest inverse associations with term birth weight. Study limitations may have obscured true associations, including measurement error stemming from a lack of individual-level information on primary water sources, water arsenic concentrations, and water consumption patterns.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Peso ao Nascer , Água Potável/análise , Feminino , Humanos , Gravidez , Estados Unidos , Poluentes Químicos da Água/análise , Abastecimento de Água , Poços de Água
13.
Chemosphere ; 297: 134091, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35218785

RESUMO

Titanium dioxide (TiO2) is widely used in engineered particles including engineered nanomaterial (ENM) and pigments, yet its occurrence, concentrations, temporal variability, and fate in natural environmental systems are poorly understood. For three years, we monitored TiO2 concentrations in a rural river basin (Edisto River, < 1% urban land cover) in South Carolina, United States. The total concentrations of Ti, Nb, Al, Fe, Ce, and La in the Edisto River trended higher during spring/summer compared to autumn/winter. Upward trending Ti/Nb ratio in the spring/summer compared to near-background autumn/winter ratios of 255.7 ± 8.9 indicated agricultural preparation and growing-season-related increases in TiO2 engineered particles. In contrast, downward trending of the Ti/Al and Ti/Fe ratios in the spring and summer compared to the near-background autumn/winter ratios of 0.05 indicated greater mobilization of Fe and Al, relative to Ti during spring/summer. Surface-water concentrations of TiO2 engineered particles varied between 0 and 128.7 ± 3.9 µg TiO2 L-1. Increases in TiO2 concentrations over the spring/summer were associated with increases in phosphorus, orthophosphate, nitrate, ammonia, anthropogenic gadolinium, water temperature, suspended sediments, organic carbon, and alkalinity, and with decreases in dissolved oxygen. The association between these contaminants together with the timing of the increases in their concentrations is consistent with diffuse wastewater sources, such as reuse application overspray, biosolids fertilization, leaking sewers, or septic tanks, as the driver of instream concentrations; however, other diffuse sources cannot be ruled out. The findings of this study indicate spatially-distributed (non-point source) releases can result in high concentrations of TiO2 engineered particles, which may pose higher risks to rural stream aquatic ecosystems during the agricultural season. The results illustrate the importance of monitoring seasonal variations in engineered particles concentrations in surface waters for a more representative assessment of ecosystem risk.


Assuntos
Rios , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Estações do Ano , Titânio , Água , Poluentes Químicos da Água/análise
14.
ACS ES T Water ; 2(11): 2201-2210, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37552727

RESUMO

There have been over 507 million cases of COVID-19, the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in 6 million deaths globally. Wastewater surveillance has emerged as a valuable tool in understanding SARS-CoV-2 burden in communities. The National Wastewater Surveillance System (NWSS) partnered with the United States Geological Survey (USGS) to implement a high-frequency sampling program. This report describes basic surveillance and sampling statistics as well as a comparison of SARS-CoV-2 trends between high-frequency sampling 3-5 times per week, referred to as USGS samples, and routine sampling 1-2 times per week, referred to as NWSS samples. USGS samples provided a more nuanced impression of the changes in wastewater trends, which could be important in emergency response situations. Despite the rapid implementation time frame, USGS samples had similar data quality and testing turnaround times as NWSS samples. Ensuring there is a reliable sample collection and testing plan before an emergency arises will aid in the rapid implementation of a high-frequency sampling approach. High-frequency sampling requires a constant flow of information and supplies throughout sample collection, testing, analysis, and data sharing. High-frequency sampling may be a useful approach for increased resolution of disease trends in emergency response.

15.
Environ Sci Technol ; 56(2): 1028-1040, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34967600

RESUMO

Process wastewaters from food, beverage, and feedstock facilities, although regulated, are an under-investigated environmental contaminant source. Food process wastewaters (FPWWs) from 23 facilities in 17 U.S. states were sampled and documented for a plethora of chemical and microbial contaminants. Of the 576 analyzed organics, 184 (32%) were detected at least once, with concentrations as large as 143 µg L-1 (6:2 fluorotelomer sulfonic acid), and as many as 47 were detected in a single FPWW sample. Cumulative per/polyfluoroalkyl substance concentrations up to 185 µg L-1 and large pesticide transformation product concentrations (e.g., methomyl oxime, 40 µg L-1; clothianidin TMG, 2.02 µg L-1) were observed. Despite 48% of FPWW undergoing disinfection treatment prior to discharge, bacteria resistant to third-generation antibiotics were found in each facility type, and multiple bacterial groups were detected in all samples, including total coliforms. The exposure-activity ratios and toxicity quotients exceeded 1.0 in 13 and 22% of samples, respectively, indicating potential biological effects and toxicity to vertebrates and invertebrates associated with the discharge of FPWW. Organic contaminant profiles of FPWW differed from previously reported contaminant profiles of municipal effluents and urban storm water, indicating that FPWW is another important source of chemical and microbial contaminant mixtures discharged into receiving surface waters.


Assuntos
Rios , Poluentes Químicos da Água , Animais , Bebidas , Monitoramento Ambiental , Rios/química , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade
16.
Sci Total Environ ; 800: 149350, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34399326

RESUMO

Biological assemblages in streams are affected by a wide variety of physical and chemical stressors associated with land-use development, yet the importance of combinations of different types of stressors is not well known. From 2013 to 2017, the U.S. Geological Survey completed multi-stressor/multi-assemblage stream ecological assessments in five regions of the United States (434 streams total). Diatom, invertebrate, and fish communities were enumerated, and five types of potential stressors were quantified: habitat disturbance, excess nutrients, high flows, basic water quality, and contaminants in water and sediment. Boosted regression tree (BRT) models for each biological assemblage and region generally included variables from all five stressor types and multiple stressors types in each model was the norm. Classification and regression tree (CART) models then were used to determine thresholds for each BRT model variable above which there appeared to be adverse effects (multi-metric index (MMI) models only). In every region and assemblage there was a significant inverse relation between the MMI and the number of stressors exerting potentially adverse effects. The number of elevated instream stressors often varied substantially for a given level of land-use development and the number of elevated stressors was a better predictor of biological condition than was development. Using the adverse effects-levels that were developed based on the BRT model results, 68% of the streams had two or more stressors with potentially adverse effects and 35% had four or more. Our results indicate that relatively small increases in the number of stressors of different types can have a large effect on a stream ecosystem.


Assuntos
Ecossistema , Rios , Animais , Monitoramento Ambiental , Peixes , Invertebrados , Estados Unidos , Qualidade da Água
17.
Sci Total Environ ; 788: 147721, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34134358

RESUMO

A pilot-scale expanded target assessment of mixtures of inorganic and organic contaminants in point-of-consumption drinking water (tapwater, TW) was conducted in Puerto Rico (PR) to continue to inform TW exposures and corresponding estimations of cumulative human-health risks across the US. In August 2018, a spatial synoptic pilot assessment of than 524 organic and 37 inorganic chemicals was conducted in 14 locations (7 home; 7 commercial) across PR. A follow-up 3-day temporal assessment of TW variability was conducted in December 2018 at two of the synoptic locations (1 home, 1 commercial) and included daily pre- and post-flush samples. Concentrations of regulated and unregulated TW contaminants were used to calculate cumulative in vitro bioactivity ratios and Hazard Indices (HI) based on existing human-health benchmarks. Synoptic results confirmed that human exposures to inorganic and organic contaminant mixtures, which are rarely monitored together in drinking water at the point of consumption, occurred across PR and consisted of elevated concentrations of inorganic contaminants (e.g., lead, copper), disinfection byproducts (DBP), and to a lesser extent per/polyfluoroalkyl substances (PFAS) and phthalates. Exceedances of human-health benchmarks in every synoptic TW sample support further investigation of the potential cumulative risk to vulnerable populations in PR and emphasize the importance of continued broad characterization of drinking-water exposures at the tap with analytical capabilities that better represent the complexity of both inorganic and organic contaminant mixtures known to occur in ambient source waters. Such health-based monitoring data are essential to support public engagement in source water sustainability and treatment and to inform consumer point-of-use treatment decision making in PR and throughout the US.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Água Potável/análise , Monitoramento Ambiental , Humanos , Porto Rico , Água , Poluentes Químicos da Água/análise
18.
Sci Total Environ ; 793: 148453, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34182445

RESUMO

Pesticides occur in urban streams globally, but the relation of occurrence to urbanization can be obscured by regional differences. In studies of five regions of the United States, we investigated the effect of region and urbanization on the occurrence and potential toxicity of dissolved pesticide mixtures. We analyzed 225 pesticide compounds in weekly discrete water samples collected during 6-12 weeks from 271 wadable streams; development in these basins ranged from undeveloped to highly urbanized. Sixteen pesticides were consistently detected in 16 urban centers across the five regions-we propose that these pesticides comprise a suite of urban signature pesticides (USP) that are all common in small U.S. urban streams. These USPs accounted for the majority of summed maximum pesticide concentrations at urban sites within each urban center. USP concentrations, mixture complexity, and potential toxicity increased with the degree of urbanization in the basin. Basin urbanization explained the most variability in multivariate distance-based models of pesticide profiles, with region always secondary in importance. The USPs accounted for 83% of pesticides in the 20 most frequently occurring 2-compound unique mixtures at urban sites, with carbendazim+prometon the most common. Although USPs were consistently detected in all regions, detection frequencies and concentrations varied by region, conferring differences in potential aquatic toxicity. Potential toxicity was highest for invertebrates (benchmarks exceeded in 51% of urban streams), due most often to the neonicotinoid insecticide imidacloprid and secondarily to organophosphate insecticides and fipronil. Benchmarks were rarely exceeded in urban streams for plants (at 3% of sites) or fish (<1%). We propose that the USPs identified here would make logical core (nonexclusive) constituents for monitoring dissolved pesticides in U.S. urban streams, and that unique mixtures containing imidacloprid, fipronil, and carbendazim are priority candidates for mixtures toxicity testing.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Invertebrados , Praguicidas/análise , Praguicidas/toxicidade , Rios , Estados Unidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
19.
Environ Sci Technol ; 55(12): 8180-8190, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34096267

RESUMO

Surface waters often contain a variety of chemical contaminants potentially capable of producing adverse outcomes in both humans and wildlife due to impacts from industrial, urban, and agricultural activity. Here, we report the results of a zebrafish liver (ZFL) cell-based lipidomics approach to assess the potential ecotoxicological effects of complex contaminant mixtures using water collected from eight impacted streams across the United States mainland and Puerto Rico. We initially characterized the ZFL lipidome using high resolution mass spectrometry, resulting in the annotation of 508 lipid species covering 27 classes. We then identified lipid changes induced by all streamwater samples (nonspecific stress indicators) as well as those unique to water samples taken from specific streams. Subcellular impacts were classified based on organelle-specific lipid changes, including increased lipid saturation (endoplasmic reticulum stress), elevated bis(monoacylglycero)phosphate (lysosomal overload), decreased ubiquinone (mitochondrial dysfunction), and elevated ether lipids (peroxisomal stress). Finally, we demonstrate how these results can uniquely inform environmental monitoring and risk assessments of surface waters.


Assuntos
Rios , Poluentes Químicos da Água , Animais , Misturas Complexas , Humanos , Lipidômica , Fígado/química , Porto Rico , Estados Unidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
20.
Sci Total Environ ; 773: 145062, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940714

RESUMO

Chemical-contaminant mixtures are widely reported in large stream reaches in urban/agriculture-developed watersheds, but mixture compositions and aggregate biological effects are less well understood in corresponding smaller headwaters, which comprise most of stream length, riparian connectivity, and spatial biodiversity. During 2014-2017, the U.S. Geological Survey (USGS) measured 389 unique organic analytes (pharmaceutical, pesticide, organic wastewater indicators) in 305 headwater streams within four contiguous United States (US) regions. Potential aquatic biological effects were evaluated for estimated maximum and median exposure conditions using multiple lines of evidence, including occurrence/concentrations of designed-bioactive pesticides and pharmaceuticals and cumulative risk screening based on vertebrate-centric ToxCast™ exposure-response data and on invertebrate and nonvascular plant aquatic life benchmarks. Mixed-contaminant exposures were ubiquitous and varied, with 78% (304) of analytes detected at least once and cumulative maximum concentrations up to more than 156,000 ng/L. Designed bioactives represented 83% of detected analytes. Contaminant summary metrics correlated strong-positive (rho (ρ): 0.569-0.719) to multiple watershed-development metrics, only weak-positive to point-source discharges (ρ: 0.225-353), and moderate- to strong-negative with multiple instream invertebrate metrics (ρ: -0.373 to -0.652). Risk screening indicated common exposures with high probability of vertebrate-centric molecular effects and of acute toxicity to invertebrates, respectively. The results confirm exposures to broad and diverse contaminant mixtures and provide convincing multiple lines of evidence that chemical contaminants contribute substantially to adverse multi-stressor effects in headwater-stream communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA